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PERCENTILE ESTIMATES RELATED TO EXPONENTIAL AND 

PARETO DISTRIBUTIONS 

INTRODUCTION 

 

The paper as posted to my website examined percentile  statistics from a parent-offspring or Neyman-

Scott  spatial pattern.   There are numerous applications of this pattern in meteorology, environmental 

science and epidemiology.  [1,2]  The paper identified that certain data errors in parent-offspring pairing  

can significantly increase the upper confidence limit (CL)  and lead to overestimation of the  P95  statistic.   

In a recent  article, Ferrandino et al.  refers to a  Neyman-Scott pattern  as a  “mock epidemic” to 

differentiate the computer generated  pattern from a real epidemic. [1]  In their  article, the mock epidemic 

was used  to analyze search strategies for diseased plants.  

This note expands  on the “perfect information” case (Case 1) in the posted paper.   For this case, a single 

parent responsible for infecting n offspring  at  distances  distributed by the exponential distribution.  The 

analytical solution for sampling distribution  was identified in the paper.  All other cases contain the 

potential for  data error.   

For the perfect information case with a given probability distribution and parementers, the only variable 

affecting estimation of percentile values  is sample size.   From a sample as small as  three numbers,  

theoretically we can generate every percentile value  from  a probablity of 1% to 99% (P1 to P99).   The  

central question is not  can we calculate percentiles with very limited data, but  rather can we trust them.   

Or perhaps, the central question should be  how much trust can be placed in these measures.  

 Percentile statistics are summary statistics, beneath which our raw data, including the flaws in record 

keeping,  assumptions  and computational  methodology can hide.    While there is no rigorous definition 

for  “bad” in statistics, all signs will point in this direction when  high end  statistics (P90+)  are calculated 

with   flaws in data and  a lack of knowledge of the parent distribution.     

Certainly, estimates of the center are more robust.  It is out of necessity that the high range percentile 

estimates are computed.    Applications such as encountered in disease control efforts,  necessitate the 

calculation  high end percentile estimates,   in order to identify the longer traveled pathogens.   Similar 

application occurs in environmental problems, where in order to control the spread of pollutants,  the 

longer distances are the most relevant measures.  

Environmental, mineral  exploration and epidemiology share a common challenge of making statistical 

estimates in the high end  of percentiles (P95- P99) where the data may be sparse with limited accuracy. 

Consider the spread of an oil spill.  The far edges of the spill are the most important as may be related to 

the limit of potential environmental damage.  Far removed from the foci of the spill, minute droplets of 

the most degraded oil in the spill must be used in the statistical analysis. 

Theoretical results from identified stochastic pattern satisfies one  element of  technical validity-  the 

results are easily reproduced.  However,  this does  not ensure the  inferences drawn from model statistics 
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will be correct  to real world application.   Stochastic analysis (forward analysis) and statistical analysis 

(inverse analysis) are both founded in the mathematics of probability.  To use an analogy, the highway is 

proven theory.  Forward analysis travels from a rigorous “given” to an outcome.  Inverse analysis begins 

with outcomes,  and travels the other direction towards the “givens.”   

EXTENSION OF PRIOR WORK 

 

In this note, I  have provided  1) Order statistics relationship to the beta distribution in a more generalized  

and rigorous manner, 2) Relationship of order statistics to percentile measures, and 3) Sampling 

distribution and simulation result for interpolated percentiles.  

I have used the term percentile to be consistent with the paper, however all equations apply to quantiles.   

Further the Greek symbol   is used when defining probabily levels of  confidence limits of statistics  (See 

equations 8- 10, Table 1) and p for percentile levels.  Confidence limits at a stated probability level, are 

denoted as       .  Common high and low limits are CL(0.95) and CL(0.05), respectively.    

  SAMPLING DISTRIBUTION OF I.I.D.  ORDER STATISTICS  

 

For an independent and identically distributed  (i.i.d) sample of size n, the probability density function 

(pdf) of the k
th

 order statistics, ranked from lowest to highest with        is 

     
  

            
                         

(1) 

where f(x) and F(x) are the pdf and cdf , respectively, of the parent distribution. [3]   

Substituting        and            into the above equation,  results in 

     
        

            
                         

(2) 

Since              for every positive integer (proof given on page 296 of Reference 2), then 

        

            
 

      

        
 

(3) 

The  beta function,        as a function of F(x) is  

             
      

        
                   

(4) 

Function  g(x) expressed in (2) is  identical to the product of (4) and  f(x) or 
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                       (5) 

 Since an equivalent   g(x) expression is 

      
        

  
 
     

  
 

(6) 

then 

                  (7) 

Setting          so          and since                , then 

                        (8) 

 

Equation (8) is used to calculate confidence limits.  For example , a  high confidence limit, CL(0.95) of 

the k
th

  ranked order statistic          equals            .  For the following distributions, the 

cumulative distribution and inverse (quantile function) are presented.  

Table 1:  Cumulative and Inverse Distributions 

Distribution 

 

            

Exponential 
  

 

 
  

 
  

          

 

Pareto -I 
   

 

 
 
 

 
           

 

In all cases,                   All parameters of these distributions are positive values.   The 

Pareto  distribution is applicable for         It is noted that the inverse expressions, as given above, 

would be the identical in the random number generator where       , a uniform random deviate from 0 to 

1, is set equal to 1 – p.  

Substituting the inverse functions results into equation 8 results in: 

Exponential Distribution:                           

 

(9) 
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Pareto-I:                            

 

(10) 

The means of g(x) for the exponential and Pareto distributions  are shown as equations  11 and 12, from 

reference 3. 

 

Mean of Sampling 

Distribution for Exponential  

 

           

 

       

 

 

(11) 

 

Mean of  Sampling 

Distribution for Pareto       
  

      

        
 
 
 

      
 
 
 

 

 

(12) 

 

RELATIONSHIP OF ORDER STATISTICS TO PERCENTILES 

 

Various methods have been developed for estimating percentiles.  Consider  an order set of data,  with x1 

as the lowest and xn as the highest.  We define    as the value of the p
th 

percentile, where p is in the range 

of {             

- METHOD 1  (NO INTERPOLATION) 

No interpolation is used.   The order statistic is the ceiing function of       For example, if       , then 

     .   For p = 0 and p = 1, the percentile value is equal to the minimum and the maximum of the 

sample, respectively.      for small sets of data, will increase in a step-wise manner, and can not be 

inverted, as shown in figure 1. 

       

      

 

(13) 
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- METHOD 2  

(linear interpolation when k is greater than 1 or  less than n) 

For p = 0 and p = 1, the percentile value is equal to the minimum and the maximum of the sample, 

respectively.  In all other percentile values are calculated based on a linear interpolation of the k
th

  order 

statistic as indicated by Method 1 and k+1 order statistic:  

 

       

       
 

 
 

                   

 

(14) 

  

 - METHOD 3:  (INVERTIBLE    AND LINEAR INTERPOLATION) 

Methods 1 and 2 do not create a unique     for every value of p.   So, while a functional  relationship is 

developed, for p as the independent variable,  there is no functional relationship for      as the independent 

variable.  Method 3 will produce an invertible series.  For p = 0 and p = 1, the percentile value is equal to 

the minimum and the maximum of the sample, respectively.  In all other percentile values are calculated 

based on a linear interpolation of the k
th

  order statistic as indicated by Method 1 and k+1 order statistic:  

  

           

           

                   

 

(15) 
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- EXAMPLE OF METHODS 

To demonstrate  the differences among these methods,  the p
th 

percentile is calculated below for  a very 

small  data sample   x = [1, 5, 80, 300].   Generally, as the sample increases, the difference among these 

methods decreases.   It is noted that Matlab program  uses Method 2 and Microsoft  Excel uses  Method 3. 

 

Vp  Estimates 

p Method  1 Method 2 Method 3 

0 1 1 1 

0.50 5 42.5 42.5 

0.51 80 45 44.75 

0.75 80 190 135 

0.95 300 300 267 

1.00 300 300 300 

 

Methods 2 and 3 have the identical median, consistent with generally accepted definition of the median as 

shown below.     Differences are less with more data and less dispersion.   

Figure 1:  Comparison of Percentile Estimates using the three methods 
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EXAMPLES OF CONFIDENCE INTERVALS BASED ON SIMULATION  

 

Exponential distribution cases were run with      which corresponds to F
-1

(0.95) = 30 and        

For method 1, the analytical solution agreed within 2 decimal places for the cases shown below when the 

number of simulation runs was one million.  It is noted that due to vectorized coding, these runs took less 

than 5 seconds on a PC.  

- EXPONENTIAL CASES 

 

Table 2:  P95 – Simulated P95  Mean Values  (true value = 30) 

Sample Size Method 1 Method 2 Method 3 

10 29.3 29.3 24.8 

20 26.0 31.0 26.5 

30 29.9 29.9 27.7 

 

Lower (5%) and Upper  (95%) Confidence Levels of P95 

Sample Size Method 1 Method 2 Method 3 

10 14 to 53 14 to 53 12 to 42 

20 15 to 40 18 to 48 16 to 41 

30 19 to 44 18 to 44 18 to 40 

 

Using method 1 for calculating confidence intervals, there is a saw tooth pattern, due to the discrete 

nature of the ceiling function.  These discrete changes occurs between sample sizes 19 and 20, 39 and 40, 

59 and 60, etc.    
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- PARETO I CASES 

The Pareto I probability density distribution is given as: 

      
   

     
(16) 

 

The distribution parameters used for the Pareto I cases were         and          These  parameters 

were chosen  to match the exponential case values of   F
-1

(0.95)  = 30 and       .   

Table 3:  P95 – Simulated P95 Values (average of one million statistics) 

 

Sample 

Size, 

n 

Method 1 

 

Method 2 Method 3 

Exponential Pareto I Exponential Pareto I Exponential Pareto I 

10 29.3 32.8 29.3 32.8 24.8 31.2 

20 26.0 27.2 31.0 32.8 26.5 31.2 

30 29.9 31.2 29.9 27.7 27.7 28.8 

 

P95 – Lower (5%) and Upper  (95%) Confidence Levels 

Sample 

Size, 

n 

Method 1 

 

Method 2 Method 3 

Exponential Pareto I Exponential Pareto I Exponential Pareto I 

10 14 to 53 17 to 66 14 to 53 17 to 66 12 to 42 16 to 49 

20 15 to 40 18 to 44 18 to 48 20 to 60 16 to 41 19 to 44 

30 19 to 44 21 to 49 18 to 44 21 to 49 18 to 40 20 to 43 
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The above tables show very comparable results.   The graph of confidence limits provided on the 

following page, also shows similar confidence limits.    Analytically calculated values agreed within two 

decimal points to the simulated results.   

 

 

  

SUMMARY 

 

1)  Sampling distribution provide the uncertainty of statistics taken from limited sample.  The derivation 

of sampling distributions and their inverse as they related to order statistics were shown in a general form.    

2) The distribution and related confidence intervals of order statistics from samples taken from  the  

exponential and  Pareto distribution were identified.  An analytical solution of the mean value of order 

statistics as published in the literature was presented.  

3)    Three common methods to calculate percentiles  was presented.    Method 1 (no interpolation) 

directly relates order statistics with percentiles, so the analytical distribution could be used to calculate 

mean and confidence limits to the sampling distribution.  For Methods 2 and 3, Monte-Carlo simulation 

was used.  
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4)  For Method 1,  confidence intervals as calculated by the analytical solution and simulation were in 

close agreement for the exponential and Pareto cases.    

ADDITIONAL WORK 

 

The paper posted to my website explored the impact of data errors for a mock epidemic.  This note 

extends the theoretical work in the most idealized case of the paper (Case 1: Perfect Information).     As 

stated in the introduction,  we have no rigorous means of separating “good” and “bad” statisitics.   

However,  we can make imperfect assessments of the  varying degrees of robustness or fragility of  

results.   

Additional work is ongoing with the log normal distribution.  I may explore the more realistic situation 

where a set of data is randomly drawn, and the distribution that seems to fit the best is used in the high-

end estimates.   This erroneous selection would  introduce additional error into the estimation process.   

The Pareto and exponential cases were expected to be similar, as the parent distributions had identical 

F(0.95) and variance values.  Additional  cases may be developed in the future, for parent distribution 

with similar means and variances and alternative means of  calculated high end percentile values.   

NOTATION 

 

       Beta probability density distribution function (pdf) 

B(x)     Beta cumulative distribution function 

        Gamma function 

       Ceiling function,  argument value is rounded to the next highest integer 
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